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Given an optimization problem defined by an objective function f : Rn 7→ R and
constraints c : Rn 7→ R

m, we define measures of optimality for the general optimization
problem

min {f(x) : l ≤ c(x) ≤ u} . (1)

Our aim is to benchmark the accuracy achieved by optimization algorithms. A secondary
aim is to test identification functions.

1 Background

Given x ∈ Rn, we define measures of optimality in terms of the set of ε-active constraints.
An ε-active constraint is defined in terms of the distance to the boundary of x. Given x, y

in Rn, we define a distance between vectors by

δk[x, y] = min
{
|xk − yk|,

|xk − yk|
min{|xk|, |yk|}

}
if min{|xk|, |yk|} 6= 0; otherwise, δk[x, y] = |xk − yk|. The set of ε-active constraints at x is
then

Aε(x) = {k : min{δk[c(x), l], δk[c(x), u]} ≤ ε} .

In general ε is related to the expected accuracy of the optimization algorithm since the set
Aε(x) contains all constraints that are nearly active as measured by ε. In all cases, we must
expect that

lk ≤ ck(x) ≤ uk or min{δk[c(x), l], δk[c(x), u]} ≤ ε, 1 ≤ k ≤ n.
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2 Multipliers

We measure optimality by computing multipliers explicitly. We need the matrix of con-
straint gradients C(x) for the constraints that are ε-active, that is,

C(x) = (∇ck(x) : k ∈ Aε) .

Similarly, we need the critical cone defined by

Sε =

v :
vk free if δk[c(x), l] ≤ ε, δk[c(x), u] ≤ ε
vk ≥ 0 if δk[c(x), l] ≤ ε
vk ≤ 0 if δk[c(x), u] ≤ ε

We now determine multipliers via the bound-constrained least squares problem

min {‖∇f(x)− C(x)v‖ : v ∈ Sε} . (2)

If λ(x) is a solution of (2), then

νs(x) = ‖∇f(x)− C(x)λ(x)‖ (3)

is an absolute measure of optimality. In the special case where Sε is empty (the problem
may be unconstrained) we set νs(x) = ‖∇f(x)‖.

The AMPL/GAMS facilities allow us to formulate the computation of νs in different
ways. Since there are no solvers that deal with the structure of the least squares problem
(2), we prefer to compute the multipliers via the problem

min
{

1
2‖y‖

2 : y = ∇f(x)− C(x)v, v ∈ Sε
}
. (4)

In this formulation, νs(x) = ‖y‖.
We verify that the computation of the multipliers via (2) or (4) is accurate by computing

the projected gradient. For this computation, the gradient is

r = C(x)T (C(x)v −∇f(x)) ,

so that the projected gradient is

r̂k =


rk if δk[c(x), l] ≤ ε, δk[c(x), u] ≤ ε
min(rk, 0) if δk[c(x), l] ≤ ε
max(rk, 0) if δk[c(x), u] ≤ ε

(5)

3 Feasibility and Complementarity

We measure feasibility in terms of relative and absolute distances to the boundary with the
function

νf (x) = max{µk(x) : 1 ≤ k ≤ n} (6)

2



where

µk(x) =


0 if lk ≤ ck(x) ≤ uk,
δk[c(x), l] if ck(x) ≤ uk, and
δk[c(x), u] if lk ≤ ck(x).

If νf (x) ≤ ε then the problem is ε- feasible.
An advantage of computing the multipliers by either (2) or (4) is that all the multipliers

of the ε-active constraints have the proper sign. We define

νc(x) = max {min(δk[c(x), l], δk[c(x), u)]) : k ∈ Aε(x)} , (7)

as a measure of complementarity. Note that ε 7→ νc(x) is non-decreasing.

4 Optimality

Given x ∈ Rn we have outlined three measures of optimality for the general optimization
problem (1). A benchmark solver should provide these measures.

We have the distance to feasibility νf (x) defined by (6). Note that this measure combines
relative and absolute distances to the boundary.

We also have the distance to complementarity νc(x) defined by (7). This measure com-
bines relative and absolute distances to the boundary for those constraints that are consid-
ered to be ε-active. Note that our definition guarantees that νc(x) ≤ ε.

The final measure of optimality is the distance to a Kuhn-Tucker point defined by (3).
Since this measure depends on the scaling of the gradient, we also want to know the relative
measure,

νs,r(x) =
‖∇f(x)− C(x)λ(x)‖

‖∇f(x)‖
,

of optimality. Finally, we provide the absolute multiplier accuracy and the relative multiplier
accuracy,

νm(x) = ‖r̂‖, νm,r(x) =
‖r̂‖

‖∇f(x)‖
,

where r̂ is the projected gradient defined by (5).

feasibility νs(x)
complementarity νc(x)
optimality (absolute) νs(x)
optimality (relative) νs,r(x)
multiplier (absolute) νm(x)
multiplier (relative) νm,r(x)

Table 1: Measures of optimality

Table 1 summarizes all the measures of optimality for an optimization problem. We
consider the multipliers to be sufficiently accurate if

min{νm(x), νm,r(x)} ≤ σ1 min{νc(x), νs,r(x), σ2}
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for some tolerances σ1, σ2 in (0, 1). For example, σ1 = 0.1 and σ2 = 10−3.

5 Multipliers via Steepest Descent

An alternate definition of multipliers is obtained by considering the steepest descent direc-
tion with respect to ε-feasible directions. We define the set of ε-feasible direction as the set
Fε(x) of all w ∈ Rn that satisfy the following conditions

〈∇ck(x), w〉 ≥ 0, δk[c(x), l] ≤ ε,
〈∇ck(x), w〉 ≤ 0, δk[c(x), u] ≤ ε,

Note that if δk[c(x), l] ≤ ε and δk[c(x), u] ≤ ε, then we require that 〈∇ck(x), w〉 = 0. This
happens if lk = uk, but may also happen if lk and uk are close.

We can now define the steepest descent direction relative to the set Aε as the solution
of the optimization problem

min {〈∇f(x), w〉 : ‖w‖ ≤ 1, w ∈ Fε} .

If w is the solution to this problem, then

νs(x) = −〈∇f(x), w〉,

is equivalent to the definition of νs via (3). In general we can only say that

0 ≤ νs(x) ≤ ‖∇f(x)‖,

and that the lower bound is achieved for large ε in most cases. Also note that the function
ε 7→ νs(x) is non-increasing.

6 Theory

We want to justify these measures by showing that if

ν(x) = max(νf (x), νs(x), νc(x))

then ν(x) ≤ ε if and only x is an approximate solution of the constrained optimization
problem (1). We also need to study the choice of ε. We should choose ε so that ν(x) above
is (nearly) minimal.

Theorem 1 If the MFCQ is satisfied at x∗, then x 7→ ν(x) is lower semicontinuous at x∗.
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